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Final Report 
AASERT-97: Mechanisms and Control of Chaos and Halos in High-Power Microwave 

Tubes 
AFOSR Grant No. F49620-97-1-0480 

This report summarizes our research carried out under the auspices of the above 
referenced grant from July 1, 1997 to June 30, 2000. The goal of this research is to 
investigate chaos, halos and confinement in beam plasmas in regimes relevant to the 
development of advanced microwave/millimeter wave sources. 

An important issue in the design of HPM tubes is how to prevent high-intensity 
relativistic electron beams from forming halos because they cause electron beam losses and 
subsequent plasma formation, rf pulse shortening and rf breakdown [1]. Under the auspices 
of the present grant, investigations have been conducted of the confinement of bunched 
beams in high-power klystron amplifier. 

In particular, we studied the confinement of a highly bunched beam propagating through a 
perfectly conducting drift tube in a uniform magnetic field based on the Green's function 
description [2] of space charge. In the analysis [3,4], a highly bunched beam was treated as a 
periodic array of point charges, while an unbunched beam was considered as a line charge, as 
illustrated in Fig. 2, where a is the radius of the drift tube and L is the period. In Fig. 2, the 

point charge represents a bunch in a highly bunched beam. Use was made of eigenfunction 
expansion to compute the Green's functions for the Poisson equation for both the line charge 
and the periodic array of point charges [2]. Making use of these Green's functions, we 
computed the electrostatic potential due to the surface charge on the perfectly conducting 
drift tube. With a proper choice of the vector potential for the applied uniform magnetic field 
B0e , we derived and analyzed non-relativistic Hamilton's equations of motion for both the 
line charge and the periodic array of point charges. 

It was shown [3,4] that for a charge bunch with canonical angular momentumPe = 0, the 

condition for radial confinement is given by 
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where a = 2na/L, IQ(x) and /,(*) are the zeroth- and first-order modified Bessel 

functions of the first-kind, respectively, coj =(4ne2 / m)(Nbmch/na2L) is the effective 

plasma frequency squared with Nbmch being the number of electrons per bunch, and 
ooc = eB0 / mc is the nonrelativistic electron cyclotron frequency. 
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Figure 2. Schematics of a line charge and a periodic array of point charges in a 
perfectly conducting drift tube. 
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2-D Brillouin Density Limit 

Figure 3. Plot of the highest value of the effective self-field parameter 
2(02 / co2. as a function of a = 2na/ L for radial confinement of unbunched 
(2D) and highly bunched (3D) beams. 



Figure 3 shows the highest value of the effective self-field parameter 2<o2
p/(ö2

c as a 

function of a = 2na / L for radial confinement. Note that the well-known Brillouin density 
limit with 2<o2 / Co2 = 1 [5] is recovered by taking L -» 0 while holding the effective plasma 

frequency (Op fixed. 

The results shown in Fig. 3 suggest that a stronger magnetic field is required to confine a 
beam as it becomes bunched in the axial direction. Work is in progress to examine the full 
effect of bunching on halo production in high-power PPM klystron amplifiers [6] and to 
extend the analysis to bunched annular beams. 
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Confinement criterion for a highly bunched beam 
Mark Hess and Chiping Chen 
Plasma Science and Fusion Center, Massachusetts Institute of Technology. Cambridge, Massachusetts 02139 

(Received 26 May 2000; accepted 28 August 2000) 

The nonrelativistic motion is analyzed for a highly bunched beam propagating through a perfectly 
conducting cylindrical pipe confined radially by a constant magnetic field parallel to the conductor 
axis. In the present analysis, the beam is treated as either a thin rod distribution representing a 
continuous (unbunched) beam or periodic collinear point charges representing a highly bunched 
beam. Use is made of a Green's function to compute the electrostatic force on the beam due to the 
induced surface charge in the conductor waif. By analyzing the Hamiltonian dynamics, a criterion 
is derived for the confinement of unbur.ched and bunched beams. It is shown that for the 
confinement of beams with the same charge per unit length, the maximum value of the effective 
self-field parameter is 2(o2/w2=2a/L for a highly bunched beam with a<L. This value is 
significantly lower than the Brillouin density limit for an unbunched beam 2w^=l. Here, a is 
the radius of the conducting cylinder, and L is the periodic spacing of the bunches. © 2000 
American Institute of Physics. [S1070-664X(00)02612-4] 

I. INTRODUCTION 

Confinement and transport of high-intensity charged- 
particle beams are important subjects in both plasma physics 
and beam physics.1-2 It is well-known that for a continuous, 
non-neutral, charged-particle beam propagating in a uniform 
magnetic field, the maximum beam density is determined by 
the so-called Brillouin density limit.3,4 For nonrelativistic 
beams, the Brillouin density limit corresponds to the condi- 
tion 2w-/«-= 1, where u)p = (ATrq2nlm)m is the nonrelativ- 
istic plasma frequency, and wc = qBlmc is the nonrelativistic 
cyclotron frequency. Although there is a large body of litera- 
ture on the equilibrium and stability properties of high- 
intensity continuous non-neutral charged-particle beams, 
high-intensity bunched beams are rarely discussed in the 
literature.5"7 

There is a need to gain a fundamental understanding of 
high-intensity bunched beams because they are widely em- 
ployed in high-power microwave (HPM) sources, such as 
klystrons and traveling wave tubes, as well as in high- 
intensity particle accelerators such as high-intensity linacs. 
In both HPM sources and high-intensity particle accelerators, 
an important problem associated with lack of full beam con- 
finement caused by the bunching of the electron and ion 
beam in the direction of beam propagation is beam loss, 
through such mechanisms as beam halo formation.8"10 

In this paper, we analyze the nonrelativistic motion of a 
highly bunched beam propagating through a perfectly con- 
ducting cylindrical pipe confined radially by a constant mag- 
netic field parallel to the conductor axis. In the present analy- 
sis, the beam is treated as either a thin rod distribution 
representing a continuous (unbunched) beam or periodic col- 
linear point charges representing a highly bunched beam. 
The Green's function is used to compute the electrostatic 
force on the beam due to the induced surface charge in the 
conductor wall. From Hamilton's equations, the radial phase 
space is studied for both unbunched and bunched beams. In 

general, the radial phase space contains both closed orbits 
(i.e., trapped particle orbits) and untrapped orbits (i.e., orbits 
which intersect the conductor wall) at sufficiently low beam 
densities, whereas only untrapped orbits exist at sufficiently 
high beam densities. By determining the conditions for the 
disappearance of trapped particle orbits, a criterion for the 
confinement of a highly bunched beam is derived. It is 
shown that for the confinement of beams with the same 
charge per unit length, the maximum value of the effective 
self-field parameter is 2a>2lü)2

c = 2alL for a highly bunched 
beam with a<L, where a is the radius of the conducting 
cylinder and L is the periodic spacing of the bunches. This 
result is significantly lower than the Brillouin density limit 
2w~/w'= 1 for an unbunched beam. 

The paper is organized as follows. In Sec. II, a Green's 
function model is presented for unbunched and bunched 
beams, and the electrostatic field produced by the induced 
surface charge is computed. In Sec. Ill, the Hamiltonian dy- 
namics of the beam is studied. In Sec. IV, a criterion is 
derived for the confinement of unbunched and bunched 
beams. Discussion and conclusions are in Sees. V and VI, 
respectively. 

II. GREEN'S FUNCTION DESCRIPTION OF SPACE 
CHARGE 

The systems we are analyzing consist of periodic space 
charge in an infinite perfectly conducting cylinder, which is 
grounded, as shown in Fig. 1. In particular, we investigate 
the dynamics of two types of periodic space charge. One 
type is a uniform rod of charge, shown in Fig. 1(a) represent- 
ing an unbunched beam. Another type is a collinear distribu- 
tion of charges equally spaced by a distance, L, shown in 
Fig. 1(b) representing a highly bunched beam. The radius of 
the cylinder is a, and the distance from the axis that the space 
charge is displaced is r. We assume that there exists an ap- 
plied uniform magnetic field B = Be., and e, denotes the 

1070-664X72000/7(12)/5206/8/$17.00 5206 © 2000 American Institute of Physics 
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while for the 3D collinear distribution 
CO 

p(x-x')=-S(r-r')S(8-d') 2    S(z-z'-nL), 

(3) 

where S(x) is the Dirac 8 function. 
The Green's function for both distributions satisfies 

three other criteria; it must be both rotationally invariant by 
2 77 and translationally invariant by nL in the unprimed co- 
ordinates, and the-fc:t-äon must be zero at the conductor 
(Dirichlet condition), i.e., 

FIG. 1. Schematics of (a) line charge and (b) periodic array of charges in a 
perfectly conducting cylinder. 

unit vector parallel to the axis of the conductor. Physically, 
the two-dimensional (2D) case is recovered from the 3D case 
by taking the limit alL-+™ for a fixed charge density. 

The presence of the periodic space charge induces a 
charge density, <r, on the surface of the conductor. The in- 
duced surface charge provides an electrostatic force on the 
space charge. We assume that the transverse velocity of the 
space charge is sufficiently small compared to the speed of 
fight; hence, only the electrostatic force from the conducting 
wall and the applied magnetic force are non-negligible in the 

system. 
In order to compute the induced surface charge and the 

electrostatic force, we first formulate a Green's function, 
which is the electrostatic potential inside the entire cylinder 
for a given distribution of unit charge(s). In cgs units, the 
Green's function, G, satisfies the Laplace's equation 

V2G=-477p(x-x'), (D 

where the primed coordinates denote the position of the 
charge(s) and the unprimed coordinates denote the point of 
observation. For the 2D rod of charge 

p(x-x')=-S(r-r')S(0-8'), (2) 

G\e+2T,-G\0 

G\z+nL=G\z 
(4) 

G|r=a = 0. 

A solution to (1) can be formed by expanding in terms of 
eigenfunctions of Laplace's equation in cylindrical coordi- 
nates. For the 3D case, we find the solution 

CO co 

z-i')eme-e') G^j 2     2   e'"<=-£' 
L,fi=— co  /=—co 

x^4{/;(„a)A:/(nr>)-/,(iir>)«/(Ba)}. 
I Ana) 

(5) 

where 

2irr 
:~T"' 

2 ire' 

2 TIT' 

L    ' 

2 IT a 

2-ITZ 

~T7 
(6) 

L-' 
a = 

and the notation ^(<) represents the greater(lesser) of r and 
r'. Simplification of (5) is possible by summing over the n 
= 0 terms, and combining the n<0 terms with their positive 
counterparts, yielding 

1 4 v 
G3D-IG2D+L2,i 

Xcos[»(£-£')] .° "r\ {/o(««)^o("^>) I0{na) 
00 GO 

Q 

-/0(nr>)/i:o(na)}+72 2  cos[n(£-£')] 

Xcos[/(0-0')] 
I,{n?<) 

{IfaaWnr*) 

(7) -/,(nr>)Ä:/(iio)}, 

where G2D represents the solution of (1) for the 2D rod dis- 
tribution. G2D is given by 

a2 + (r>r</a)2-2!:
>r<cos(d-d') 

G2D=ln P2
> + r2

<-2P>P<cos(6-d') 
,       (8) 

which is well known. 
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Since the Green's function represents the electrostatic 
potential of a unit charge, we can readily calculate the elec- 
tric field at the surface of the wall and the induced surface 

charge density, a, using the relation 

«•El surface -C«-VG|surface     C dG 

4TT 4TT 2L dr 
(9) 

where h denotes the unit vector perpendicular to the surface 
'.:--*,) and E is the electric field. C is a factor which 
deoends'on whether we are solving the 2D or 3D problem. 
For the 3D problem, C is equal to q, the value of each indi- 
vidual charge. For the 2D problem, C is equal to k, the 

charge per unit length of the rod. 
For the 2D case, the induced surface charge density is 

0"2D" La" 

i      ~t2 a~ — r - 

^T+P'2-2ar'cos(d-6') La °"2D> 

(10) 

while for the 3D case we have 

<7"3D = 

Ira" 
TT—2   cos[«(i 
L-a„=i ■£')] I0(na) 

--pr- 2  2  cos[«(£-£')] 
L a„=i i=i 

I,(nf') 
Xcos[l(0-e')]—. r. 

I An a) 
(ID 

In deriving (11), use has been made of the Wronskian, 
ll(x)K'l(x)-l'l(x)K,(x)=-l/x. 

We are now in a position to compute the electric field, 
EseK, which is exerted on the charge distribution inside the 
conductor by the induced surface charge. Because of the sys- 
tem's symmetry in the ee and e. directions, the electric field 
at the charge distribution can only be in the er direction. 
Since the sign of the surface charge is opposite to that of the 
internal charges, the force must be attractive. Eself can be 
obtained by integrating the differential electric field vector, 
evaluated at the charge distribution location, over the entire 
conductor 

self/_'\  E^'V) dS 
surface 

(r'-rs)a(rs) 

|r'-r,M     ' 
(12) 

rs is the vector measured from the central axis of the con- 
ductor to the point of the differential charge. As will be 
demonstrated in the Appendix 

4-n-A 
E?bV)=- 

for the 2D case, and 

~n\er' (13) 

E?DV)=£.™<v, 

rse!f_4ffg/        ?' 

Snq nI0(nr')I0(nr')K0(na) 

L2   ~i I0(,na) 

I6774  " "   n/,(>iP)/;(^')^a) 

for the 3D system. 

(14) 

III. HAMILTONIAN DYNAMICS 

We can investigate the radial dynamics of one rod of 
charge (2D) or one string of charges (3D) interacting with its 
self-field (14) and a constant applied magnetic field, B 
= Be.. In this system, there are no forces in the longitudinal 
direction. Therefore, we may describe all of the dynamics 
using a Hamiltonian in the radial and azimuthal directions 
and set vz = 0 without loss of generality. In particular, the 
Hamiltonian for transverse motion is given by 

H= 
1 

2m P- 
qAr 

+ 7-\Pe- 
rqAg 

+ q<f> self 

(15) 

where P is the canonical momentum, A=(rB/2)ee is the 
vector potential, and 

<f> self__  y £ 
JO 

E""dr. (16) 

For the 2D system, we can set m = pL where p is the 
mass density of the rod, and q = XL. Dividing by L on both 
sides of (15) yields a Hamiltonian per unit length, which 
correctly describes the 2D dynamics. Applying Hamilton's 
equations to (15) gives the following set of normalized equa- 
tions: 

dr dPr     P-„ .   K 

dr dr      r 

dl=Pe_i     dPe 

dr     r~      '      dr 

(17) 

where normalized variables and parameters are defined by 

2irPr       .      /2TT\
2
 P„ 

T=coLt,     P = 
mLd)L' Pe= 

2 c-self 

EseU=- 
L-E 

€=■ 

f>    2       2 32TT mc 

UB2-' 

mo)L 

qB (18) 

wL = 
2mc Aitq 

and (oL represents the Larmor frequency. From (17), it is 
obvious that the canonical angular momentum is conserved. 
Combining the first two equations in (17), and denoting ini- 
tial conditions with a subscript 0, we can find an expression 
relating the canonical radial momentum with the radial posi- 
tion 

P=±JP2
r0+F(?0)-F(r), (19) 
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FIG. 2. Plots of the effective potential F(r) vs r in the 2D system for the 
choices of system parameters corresponding to: (a) f/a2 = 0.5 and Pg/a2 

= 0.01. and (b) f/a2=3.0 and P„/az = 0.0l. 
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FIG. 3. Plots of the radial phase space in the 2D system for the two cases 
with the same choices of the system parameters as those shown in Figs. 2(a) 
and 2(b). 
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where F represents an effective potential energy, and is given 
by 

F(P)=-^- + r2 + ^M 1- — 
r~ \        a" 

for the 2D case, while 

(2C) 

r~ 1 e    „-> /        'I v-i   K0(na)  T 

„-i /-i  //(«a) 
(21) 

for the 3D case. Making use of the asymptotic properties of 
the modified Bessel functions, it is readily shown that in the 
limit alL—>°°, F(r) in (21) for the 3D case approaches F(r) 
in (20) for the 2D case. Therefore, the analysis of confine- 
ment in the 2D system will be fully recovered in the 3D 
analysis in the alL = <x> limit. 

Figures 2(a) and 2(b) show F(r) plotted for two differ- 
ent sets of values of (£,Pe) for the 2D system. There are two 
possible behaviors for this function to have. In Fig. 2(a), 
there is a kink (i.e., the function has one local minimum and 
one local maximum), while for Fig. 2(b) the function is 
monotonically decreasing. A function, F(r), with a kink 
leads to a radial phase space (r,Pr), as is illustrated in Fig. 
3(a), which contains both trapped and untrapped particle or- 

bits. An untrapped particle orbit will result in the particle 
eventually being lost to the conductor wall, whereas a 
trapped orbit corresponds to a particle confined inside the 
perfectly conducting cylinder. A monotonically decreasing 
function as in Fig. 2(b) will produce a phase space such as 
Fig. 3(b), which contains only untrapped particle orbits. 

To illustrate the 3D effects (i.e., effects of beam bunch- 
ing), we compare the phase space for the 3D case in Figs. 
4(a) and 4(b) with the 2D case shown in Fig. 3. In particular, 
Fig. 4(a), which has only untrapped orbits, has the same £ 
and Pg values as Fig. 3(a), illustrating the added effect of the 
electric field in the 3D regime. However, trapped particle 
orbits do exist at lower values of £ such as for the value of f 
shown in Fig. 4(a). 

IV. CONDITIONS FOR CONFINEMENT 

The complete criterion for trapped particle orbits is 
threefold: (a) F(f) must have a kink: (b) the initial particle 
radius must be chosen between the local maximum of F(r) 
and the other point on F(r) corresponding to the same value; 
and (c) the initial radial momentum must be sufficiently 
small, such that 

r0" =F(f0)-F(r)|B (22) 

The most important of the three criteria for trapped par- 
ticle orbits is the first. We therefore determine the region in 
parameter space (a,£,P0) space for both the 2D and 3D 
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FIG. 4. Plots of the radial phase space in the 3D system for the choices of 
system parameters corresponding to: (a) f/a: = 0.5, P,/ar = 0.01 and 

a=1.0. and (b) §/a2=0.1. P„/a2 = 0.01 and a=1.0. 

systems, such that F(P) has a kink. In order to find this 
criterion for F(r), i.e., that trapped particle orbits may exist, 
we r-.iSt look for the conditions such that F'(r)-F"(r) 
= 0. -liere F'(f) = dF(r)/dr and F"Cr) = d2F{r)ld'r2. This 
represents that transition point between F(r) being mono- 
tonic and nonmonotonic. 

A. Confinement for the 2D system 

It is evident in (20) that the only increasing term in F(f) 
is the r2 term and all other terms are decreasing. When £=0, 
applying the transition condition F'(f) = F"(r) = 0 yields 
| P e\ = a2 at r = a for both systems. However, when P0=0, it 
follows from (20) that F(f) = r2+£ln(l-r/ar). Expanding 
F(r) near P=0 yields F(r) = ?2( 1 -|/«2)- So, F(r) will not 
be monotonic at r=0 for sufficiently small Pe when the 
coefficient of the quadratic term is positive (i.e., when 
£/a2<l). Therefore, the necessary conditions for F(r) to 

have a kink are \Pe\<"2 :md £/«2<1- 
Manipulating the equation F'(f) = 0 and letting y = ar, 

we find that 

y6 + (v-l)y4 + (l-r)^2 = 0, (23) 

where fi = Pe^
2 and v=£/a2. Because 0<y<H0<? 

<a), we can further simplify (23) by letting z=y, and 

obtain 
(24) 

  a/L = °o 
 a/L = 0.3 

a/L = 0.15 
  a / L = 0.08 

aPg/mo^a2 

FIG. 5. Plots of the maximum value of the self-field parameter 2u>-/ID' for 
confinement as a function of normalized canonical angular momentum 
2Pelmioca- for several values of the aspect ratio all in the 3D system 
Note that the 2D system corresponds to the limit a/L = », and the curve 
with a/L = a:' is obtained from (30). 

where 0<z<l. Note that G(0) = /A
2
>0 andG(l) = £>0. 

It is straightforward to show that G(;) has precisely one 
zero when the transition point occurs. This statement is 
equivalent to stating that the minimum of G(c) must be 
equal to zero, and that the minimum must occur between 0 
and 1 for trapping to occur. These conditions yield 

V = 0, (25) 3zL+2(v-l)zt 

0<zmin=- 
(l-v)+J(l-v)2+3fi' 

<1. (26) 

(27) zln+iv-lhln+il-ZtrJ»2^ 

where z„nn is the minimum of G. 
Substituting (26) into (27) and solving for JJ. with the aid 

of (25) yields two possible solutions 

.2-..2 (28) 
M" = MH IXT = 11. 

where 

5/X + i = 27-18(l-v)-(l-v)2 

:x/[27-18(l-v)-(l-v)zr-64(l 

G(z)=z3 + (v-Dz2+(\-z)fi2 = 0, 

(29) 

However, the inequality (26) yields /x2<2v+ 1, and by 
graphical inspection only ti2<fi2- is possible. We find that 
for the 2D system, the following inequality must be satisfied 
for trapped particle orbits to occur: 

8ya2«27-18(l-v)-(l-i')2 

- V[27- 18( 1 - v)-( 1 - vyy-64( 1 - v)K 

(30) 

Note that since /x, and v are both independent of L, (30) is 
also independent of L. Equation (30) is plotted later in Fig. 5 
in terms of normalized Pe and the effective plasma fre- 
quency, as we compare the 2D case with the 3D case. 

Since the effective density of particles for both systems 
is given by n = (ira2Lr\ we can relate £/a2 to the effec- 
tive plasma frequency a>p = (4Trnq2/m)m (where q = \L), 
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and the cyclotron frequency wc = qBlmc by £/a" 
= 2a>2la>2

c, which is the familiar self-field parameter. As 
shown in Fig. 5, the maximum of the self-field parameter 
occurs at \Pe\ = 0, and the maximum value is 2(o~/a>-=l. 
Therefore, the criterion for the confinement is 

2<o2Ju>2'- 1. (3D 

Note that a>- = a>~/2 corresponds to the Brillouin density 
limit.3'4 

B. Confinement for the 3D system 

For the 3D system when Pe=0, we CJUI expand (21) near 
r=0 and find that the lowest order nonconstant term, the 
quadratic term, will be positive when 

l-t/a2-^ n2 K0(na)     AT, («a) 

I0(na)      Ii(na) 
'0. (32) 

By utilizing a formula related to the Wronskian, 
Im(z)Km + l(z) + Im+l(z)Km(z)=l/z, we can simplify (32) 
to 

1.5  ?   ■   ■   ■   i '"' > 

2-D 

> 

0.5 
/ 

/    3-D 

%- 
0.0 1.0 2.0 3.0 4.0 

a=27ta/L 
5.0 6.0 

FIG. 6. Plots of the maximum value of the self-field parameter 2w~/ai~ for 
confinement as a function of the aspect ratio alL for Pe=0 in both the 2D 
and 3D systems. 

2(Op     a     2a 

0)„ 7T        L 
(36) 

which is significantly lower than the Brillouin density limit. 

1+2 
na 

(33) 

Vo(««)/i("") 

The upper bound on the self-field parameter for the 3D 
system also occurs at \Pe\=0; hence, the criterion for con- 
finement is 

2a»- 1 
(34) 

1 + 2! 1/0(na)/1(iia) 

Figure 5 illustrates a few of the critic»', transition curves 
in a normalized P e and 2o)pl(D'c space. In obtaining the re- 
sults in Fig. 5, we use Newton's method to simultaneously 
solve the equations, F'(r) = F"(r) = 0 for fixed values of r 
and a. Seed values are given to £ and Pe, and convergence 
of these values typically occurs within five iterations. Be- 
cause the 2D system corresponds to the limit alL—n» as 
discussed in Sec. Ill, the transition curve for a/L = =° is iden- 
tical to the results predicted by (30). 

Figure 6 shows a plot of the upper bounds for transition 
to occur in the 2D and 3D systems. The upper bounds are 
precisely the intersections of the curves in Fig. 5 with the 
Pe=0 axis. 

Before concluding this section, we consider the follow- 
ing two limits of (34). Expanding (34) in the limit a^>l (i.e., 
a    nearly     unbunched     beam)     and     I0{na) = Iy{na) 
~eaa/(27rna)11-, we obtain 1/2 

2o> 
= 1 — 2ira~e~ 1- 

8TTV 
-4 TratL (35) 

which shows that the system asymptotically approaches the 
2D system's Brillouin flow limit for large alL. The other 
important limit of (34), a<l (i.e., a strongly bunched beam), 
may be solved numerically, and yields 

V. DISCUSSION 

We have ignored the realistic effect of a finite bunch size 
in our present model. Incorporating such an effect would 
reduce the stringent beam confinement criterion placed on 
the self-field parameter. Qualitatively, both the beam space 
charge and the induced surface charges would be less dense, 
and therefore the beam would experience a reduced electric 
field force from the conducting wall and the other bunches. 

A separate effect for a finite charge bunch would be the 
evolution of the bunch shape. In order to evaluate the impor- 
tance of such an effect relative to the beam loss mechanism 
just described, it is necessary to compare their time scales. 
We will now give an order of magnitude estimate for the 
escape time (i.e., the time needed for a particle to escape to 
the wall). 

For simplicity, assume that the particle has no canonical 
angular momentum (p-^0), and the particle is initially at 
the center of the conductor (r=0). We will assume that the 
initial radial momentum is nonzero, but relatively small (0 
<P~r0<a~<^). Using (17) and ignoring the 3D correction 
terms F{r), we obtain 

Jo Pr    Jo 

dX 

[P2
r0la

2-x2-^la2\n{i-X
2)]^ 

(37) 

the  escape  time  is  t=rloiL where  x=r/a.   Therefore, 
~Wa2)-mlu>L~u>-p

l. 
We can obtain an order of magnitude for the evolution 

time, by considering the dynamics of only one uniform 
spherical bunch of radius, R, charge, q, and mass, m, with no 
conductor present. Using Coulomb's law and the Lorentz 
force law, we find that 

dt2 mR 2- (38) 
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Equation (38) implies that the evolution time scale is of the 
order (mR3/q2)m. Assuming the density is of the order 
(4ir/?3/3)~', then the evolution time is of the order w"1. 
Hence, the effect of the bunch shape evolution is, in general, 
not negligible compared to the beam loss mechanism. There- 
fore, a detailed investigation of the effect of finite bunch size 
is required to quantify the confinement of moderately 
bunched beams. 

VI. SUMMARY 

In the present paper, we have derived confinement crite- 
ria for a highly bunched beam and an unbunched beam 
propagating down a perfectly conducting cylinder with an 
applied magnetic field. We have modeled these two systems 
by approximating the unbunched beam as a rod of charge 
and the bunched beam as collinear periodic charges. For 
these two models, we have derived the equations of trans- 
verse motion from the Hamiltonian. 

The criteria have been obtained by examining the prop- 
erties of the beam's radial phase space. There are two pos- 
sible phase spaces, one which allows trapped particle orbits 
and one which does not. The difference between the two is 
shown to be caused by the behavior of an effective radial 
potential (i.e., whether it has a kink or not). When varying 
the three parameters (a,i;,Pe) in the system, the behavior of 
the effective potential undergoes a critical transition. 

The values of (a,£,Pe) where the critical transition oc- 
curs yield an upper bound on the self-field parameter 
2ü>p/ü)' = ^/a2 for which trapped particle orbits exist. For an 
unbunched beam, the upper bound on the self-field parameter 
has been shown to be 2w^/w^l, which is precisely the 
Brillouin density limit. For a bunched beam, the maximum 
value of the self-field parameter is given in (34). The limit on 
the self-field parameter will always be less for the bunched 
beam than for the unbunched beam due to the higher local 
density of internal charges and induced surface charges, 
which contribute a higher electric field force. 

The results reported in this paper are applicable to a 
relativistic charged-particle beam by a proper application of 
the Lorentz transformation from the laboratory frame to the 
frame of reference moving with the beam. Finally, it is an- 
ticipated that the results in this paper will provide a useful 
insight into the confinement of high-intensity bunched beams 
in linear accelerators as well as in high-power microwave 
sources such as klystrons. 
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APPENDIX: CALCULATION OF THE ELECTROSTATIC 
SELF-FIELD 

When calculating the self-field force, we may assume 
that 0'=£'=o, without loss of generality, and express r' 

= (LI2tr)r'ex, and rs= (La cos &2Tr)ex+ (La sin &2-rr)ey 

+ (Lz/2v)e:. Since E.(r') = E8(r')=0 by the symmetries 
of the system in the longitudinal and azimuthal directions, 
we need only consider the force along the direction of er> 
= exi. Making use of the expressions 

(r'-rs)-ex, 

|r'-rj3 

cos 0- 
a 

 773 75 -  
r        z        r 

1 + -T- + — -2— cos (9 
a~     a~       a 

375 

and dS = a dzd8= (LI2TT)
2a dzdß, we may express (12) as 

f»      [*        (cos 6-ß)ad6 

where rj=zla and ß=r'/a, and we have also used the lon- 
gitudinal and azimuthal symmetries to change the limits of 
integration. 

Substituting (10) into (Al), we find that the self-electric 
field produced by the 2D induced surface charge at the line 
charge is 

'2D" 
-y62)X f»_ 

-«       Jod 
4(T-/^)X.   fir      dd(cOSd-ß) 

L->r\— * I    T~.  :   5T" 
+ ßz-2ßcosd) 

X 
f°° dr, 
)0(l+ß2+v

2-2 ß cos 6) 373 

ATT\      r' 

L    a —r 
(A2) 

which is identical to (13). This result can also be obtained 
easily using the method of images.13 

Of course, the first term in (14) corresponds to the 2D 
component, which we have just derived. Substituting (11) 
into (Al), we can express the self-electric field produced by 
the 3D induced surface charge at the point charge as 

rself. 
'3D" 

4 7777 Sq  v   /o(nr')0„o 

412 aL „=i /=i 

aL-„=i     I0(na) 

h{n'r')®ni 
I Ana)     ' 

(A3) 

where 

Jo Jo 

cos(na:77)cos(/0)(cos d-ß)drjdd 

dß 
CTT r» cos 

Jo Jo(T+ 

(l+/32+?72-2/?cos0)-V2 

cos( n a 77) cos( / 6) d rj d 6 

ßl+r)^-2ßcos0) 172 
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a     r ft 

= —      K0{na^ll+ß2-2ßcosd)cos(ie)de 
dp Jo 

dßJo 
,     I0{naß)K0(na) 

dß 

+ 2 2 Ip(naß)Kp{na)cos(pd) cos{l8)d0 

= TTK,(na)-r7;Il(naß)=TTnaK,(na)l'l(nr'). 

In the third step in (A4), we made use of the relation 

[<°cos(ax)dx 
—==- = K0{ab), 

Jo    \lb'+x 

while in step 4 we used the formula ' 

K0( ja2 + b2-2abcos6) 
CO 

= I0(a)K0(b) + 2^2 Ip(a)Kp(b)cos(pd), 

0^a<b. 

Substituting (A4) into (A3) yields (14). 

(A4) 
14 
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ELECTRON BEAM HALO FORMATION IN PERIODIC 
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ABSTRACT 

Electron beam halo formation is studied as a potential mechanism for electron beam 
losses in high-power periodic permanent magnet focusing klystron amplifiers. In 
particular, a two-dimensional self-consistent electrostatic model is used to analyze 
equilibrium beam transport in aperiodic magnetic focusing field in the absence of radio- 
frequency signal, and the behavior of a high-intensity electron beam under a current- 
oscillation-induced mismatch between the beam and the periodic magnetic focusing field 
Detailed simulation results are presented for choices of system parameters corresponding 
to the 50 MW, 11.4 GHz periodic permanent magnet (PPM) focusing klystron experiment 
performed at the Stanford Linear Accelerator Center (SLAC). It is found from the self- 
consistent simulations that sizable halos appear after the beam envelope undergoes 
several oscillations, and that the residual magnetic field at the cathode plays an 
important role in delaying the halo formation process. Finally, a confinement criterion is 
obtained for a highly bunched beam propagating through a perfectly conducting drift 
tube in a uniform magnetic field 

I. INTRODUCTION 

One of the main thrusts in high-power microwave (HPM) research is to overcome the 
problem of radio-frequency (RF) pulse shortening [1,2]. Several mechanisms of RF pulse 
shortening have been proposed [3], ranging from plasma formation at various locations in the 
device to nonlinear effects at the RF output section [4-7]. However, few of them have been fully 
verified in terms of theory, simulation and experiment. In this paper, we discuss halos around 
high-intensity electron beams as a mechanism by which electron beam loss and subsequent plasma 
formation may occur in high-power klystron amplifiers. 

From the point of view of beam transport in a periodic or uniform solenoidal focusing field, 
there are two main processes for halo formation in high-intensity electron beams. One process is 
caused by a mismatch in the root-mean-square (rms) beam envelope [8], and the other is due to a 
mismatch in the electron phase-space distribution [9]. Both processes can occur when the beam 
intensity is sufficiently high so that the electron beam becomes space-charge-dominated. The 
purpose of this paper is to show that the former is responsible for electron beam halos in high- 
power klystron amplifiers. 

For a periodic solenoidal focusing channel with periodicity length S and vacuum phase 
advance a0, a space-charge-dominated electron beam satisfies the condition [8] 
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where K = 2e2A^ / Y^ßt"^2 ^ me normalized self-field perveance, Ib is the electron beam 
current in amperes, en = yfcßfcE is the normalized rms emittance in meter-radians, and S is in 
meters. In the expressions for the self-field perveance AT and the no'malized rms emittance en, Nb 

is the number of electrons per unit axial length, m and - e are the electron rest mass and charge, 

respectively, c is the speed of light in vacuo, and yb = (l-ßb) is the characteristic relativistic 

mass factor for the electrons. The emittance is essentially the beam radius times a measure of 
randomness in the transverse electron motion. For a uniform density beam with radius a and 
temperature Tb, the normalized rms emittance E„ is given by 

OT*"§ft^)   ' 
where kB is the Boltzmann constant 

In particular, we study equilibrium beam transport in a periodic magnetic focusing field in the 
absence of RF signal and the behavior of a high-intensity electron beam under a current- 
oscillation-induced mismatch between the beam and the periodic magnetic focusing field, using a 
two-dimensional self-consistent electrostatic model. Detailed simulation results are presented for 
choices of system parameters corresponding to the 50 MW, 11.4 GHz periodic permanent magnet 
(PPM) focusing klystron experiment [10] performed at the Stanford Linear Accelerator Center 
(SLAC). It is found from the self-consistent simulations that sizable halos appear after the beam 
envelope undergoes several oscillations, and that the residual magnetic field at the cathode plays 
an important role in delaying the halo formation process. Prelimir"jry results of this study were 
reported earlier [11], and more detailed results were discussed else^.Iiere [12,13]. 

We also study the confinement of a highly bunched beam propagating through a perfectly 
conducting drift tube in a uniform magnetic field based on the Green's function description of 
space charge. In the present analysis, a highly bunched beam is treated as a periodic array of point 
charges, while a unbunched beam is considered as a line charge. By analyzing the equations of 
motion of a line charge and of a periodic array of point charges, confinement criteria are derived 
for unbunched and highly bunched beams propagating through a perfectly conducting drift tube in 
a uniform magnetic field. 

The paper is organized as follows. In Section II, a two-dimensional self-consistent model is 
presented for transverse electrostatic interactions in a high-intensity relativistic electron beam 
propagating in a periodic focusing magnetic field. In Section III, the equilibrium state for intense 
electron beam propagation through a PPM focusing field is discussed, the equilibrium (well- 
matched) beam envelope is determined, and self-consistent simulations of equilibrium beam 
transport are performed. In Section IV, the effects of large-amplitude charge-density and current 
oscillations on inducing mismatched beam envelope oscillations are discussed, and use is made of 
the model presented in Section II to study the process of halo formation in a high-intensity 
electron beam.    The results are compared with the SLAC PPM focusing klystron amplifier 



experiment. In Section V, a confinement criterion is obtained for highly bunched beam 
propagation through a perfectly conducting drift tube in a uniform magnetic field. In Section VI, 
conclusions are given. 

H. MODEL AND ASSUMPTIONS 

We consider a high-intensity relativistic electron beam propagating with axial velocity %cez 

through the periodic focusing magnetic field 

B~(x,y.3) = B&}et-\B'fyixex+ye,), (3) 

where s = z is the axial coordinate, xex + yey is the transverse displacement from the z -axis, 

B (s+ S) = B (s), S is the fundamental periodicity length of the focusing field, and the prime 

denotes derivative with respect to s. 
In the present two-dimensional analysis, we treat only the transverse electrostatic interactions 

in the electron beam. The effects of longitudinal charge-density and current oscillations in the 
electron beam, which are treated using the relativistic Lorentz equation and full Maxwell 
equations, will be considered in Section IV. For present purposes, we make the usual thin-beam 
approximation, assuming that (a) the Budker parameter is small, i.e., e2Nb/ybmc2 « 1, (b) the 
beam is thin compared with the lattice period S, and (c) the electron motion in the transverse 
direction is nonrelativistic. 

Under the thin beam approximation, the self-consistent electrostatic interactions in the 
electron beam can be described by a two-dimensional model involving Np macroparticles (i.e., 

charged rods). In the Larmor frame, the transverse dynamics of the macroparticles is governed by 
[8,14] 
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f&W dxt 

y$>c2 By, 

■^'(xt,yt,s) = 0, 

■V(xt,y,,s) = 0, 

(4) 

(5) 

where i = 1, 2,....,Np , and the focusing parameter Kz(s) and self-field potential <|),(.x1,yI,s) are 

defined by 
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respectively. Here, £lc(s) is the (local) relativistic cyclotron frequency associated with the axial 

magnetic field Bz(s), and rt = (xf +yf) • The beam is assumed to propagate inside a perfectly 

conducting cylindrical tube of radius rw, such that the self-field potential satisfies the boundary 

condition ((>'(/; = rw,s) = 0. Note that ^'(x^y^s) is expressed as a sum of the Green's functions 

for the Poisson's equation for a line charge in the conducting cylindrical tube. Detailed derivations 
of Eqs. (4)-(7) can be found in [8] for rw -» °°. 

The two-dimensional self-consistent model described by Eqs. (4) and (5) will be used to 
simulate equilibrium beam transport in a PPM focusing field in the absence of RF signal (Section 
III) and electron beam halo formation in the transverse direction induced by large-amplitude 
longitudinal current oscillations (Section TV). 

ffl. EQUILIBRIUM BEAM TRANSPORT 

In the absence of RF signal, the relativistic electron beam propagates through the focusing 
field in an equilibrium state. In this section, we discuss important properties of the equilibrium 
beam transport, and present results of our analysis and self-consistent simulations of periodically 
focused intense electron beam equilibria for choices of system parameters corresponding to those 
used in the SLAC 50 MW, 11.4 GHz PPM focusing klystron experiment [10]. 

A. Beam Envelope Equation for a Rigid-Rotor Vlasov Equilibrium 

It has been shown previously [15,16] that one of the equilibrium states for the system 
described by Eqs. (4) and (5) is a rigid rotor Vlasov equilibrium in which the beam density 
is uniform transverse to the direction of beam propagation. The outermost beam radius 
rb(s) = rb(s+ S) obeys the envelope equation [15] 

d2r. K    (P0)
2    (4e)2 

as rb       rb rb 

where yb$bmc\P6) = constant is the macroscopic canonical angular momentum of the beam at 

r = rb(s), and e is the unnormalized rms emittance associated with the random motion of the 

electrons. If there is no magnetic field at the cathode, then (Pe ) = 0. Any residual magnetic field 

at the cathode will lead to (PQ \ * 0. 

We analyze the beam envelope for equilibrium beam transport in the SLAC 50 MW, 11.4 
GHz PPM focusing klystron experiment [10]. The system parameters of the experiment are 
shown in Table 1. To examine the influence of small residual magnetic field on the beam 
transport, we analyze two different cases shown in Table 2. In Case I, we assume no residual 

magnetic field at the cathode, such that yb$bmc(PB ) = 0. In Case II, however, a residual field of 

6.86 G is assumed, corresponding to a beam with a finite canonical angular momentum given by 



yb$bmc(pB ) = 4.5x10 M Kgm2/s. The following dimensionless parameters are derived from 

Table      2:       S2Kz(5)=[l.04xsin(2jts/S)]2       (with      5 = 2.1cm),       o0 = 42.3° = 0.738, 

SK/4a0E =10.1,and (pe)/4e=0.0 inCaseland (Pe)/4e =6.93 in Case II. 

Figure 1 shows plots of the axial magnetic field Bz(s) and outermost beam radius rb(s) versus the 
propagation distar~e s for Cases I and II. In both cases, the amplitude of well-matched 
(equilibrium) envelope oscillations about the average beam radius is only about 0.005 mm, as seen 
in Figs. 1(b) and 1(c). 

Table 1. SLAC 50 MW, 11.4 GHz, PPM Focusing Klystron Experiment 

Beam Current Ib 190 A 
Beam Voltage 464 kV 
Cathode Radius 2.86 cm 
Cathode Temperature Tb 800°Cf 

Beam Radius 2.38 mm* 
Pipe Radius 4.7625 mm 
Total Tube Length 90.0 cm 
Focusing Field Period Length 2.1 cm 
PPM Focusing Section Length 42.0 cm 
RMS Axial Magnetic Field 1.95 kG 
estimated 

Table 2. System Parameters Used in the Simulation 

BASIC PARAMETER CASE I CASEII 
Beam Current lb 190 A 190 A 
Beam Voltage 464 kV 464 kV 
Cathode Radius 2.86 cm 2.86 cm 
Residual Magnetic Field at Cathode 0.0 G 6.86 G 
Cathode Temperature Tb 800° C 800° C 
Beam Radius 2.05 mm 2.38 mm 
Pipe Radius 9.0 mm 9.0 mm 
Total Tube Length 90.0 cm 90.0 cm 
Focusing Field Period Length 2.1cm 2.1 cm 
PPM Focusing Section Length 42.0 cm 42.0 cm 
RMS Axial Magnetic Field 1.95 kG 1.95 kG 
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Figure 1. Plots of the axial magnetic field in (a) and outermost beam radius rb(s) versus 
the propagation distance s for equilibrium beam propagation corresponding to Case I in 
(b) and Case II in (c). The dimensionless parameters are: S2Kz(s)= [l.04xsin(2jü/5)]2, 

o0 = 42.3° =0.738, SK/4c0e =10.1, and (PQ)/4£ =0.0 in (b) and (P9)/4E =6.93 in 

(c). 



B. Self-Consistent Simulation of Equilibrium Beam Transport 

Self-consistent simulations based on the model described in Sec. II are performed to farther 
investigate the equilibrium beam transport. In the simulations, 4096 macroparticles are used. The 
macroparticles are loaded according to the rigid-rotor Vlasov distribution [15] with an initial 
beam radius equal to the equilibrium (matched) beam radius at s = 0 [see Figs. 1(b) and 1(c) for 
Cases I and II, respectively]. 

Figure 2 shows, respectively, the initial and final phase-space distributions at s = 0.0 cm and 
s = 42.0 cm for Case I. Comparing the phase-space plots shown in Figs. 2(e) and 2(f) with the 
initial phase-space plots in Figs. 2(b) and 2(c), we find an increase in the emittance (randomness) 
in the transverse electron momentum. The emittance growth is a result of numerical noise in the 
simulation. However, since the beam dynamics is mostly dictated by space-charge forces for the 
parameter regime considered here, the emittance growth has little effect on the beam transport 
properties. In fact, the distribution in the configuration space shown in Fig. 2(d) agrees very well 
with the initial distribution shown in Fig. 2(a). Moreover, the effective beam radius obtained from 
the simulation agrees with that obtained from Eq. (8) within 0.2%. In the simulation, no beam loss 
is detected. 

M       -&2       0.0       0.2       0.4 
x(cm) 

.4      -4M       0.0       0.2       0.4 
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Figure 2.   Plots of the initial and final particle distributions at s = 0.0 and 42.0 cm for the 
equilibrium beam corresponding to the parameters in Case I. 



Figure 3.   Plots of the initial and final particle distributions at s =0.0 and 42.0 cm for the 
equilibrium beam corresponding to the parameters in Case II. 

Figure 3 shows, respectively, the initial and final phase-space distributions at s = 0.C cm and 
s = 42.0 cm for Case II. The final distributions shown in Figs. 3(d), 3(e), and 3(f) agree very well 
with the initial distributions shown in Figs. 3(a), 3(b), and 3(c). In this case, the effects of 
numerical-noise-induced emittance growth are less pronounced than in Case I (Fig. 2) because the 
momentum distribution is primarily determined by the finite angular momentum but not by thermal 
effects. The effective beam radius agrees with Eq. (8) within 0.5%, and no beam loss is detected 
in the simulation. 

C. Phase Space Structure 

It is known that the phase space structure for a matched intense beam in a periodic focusing 
system exhibits nonlinear resonances and chaotic behavior [17]. To determine how sensitive the 
equilibrium beam transport is against small perturbations for the parameter region of interest, we 
examine test-particle dynamics subject to the field configuration consisting of the applied focusing 
field and the equilibrium self-electric and self-magnetic fields. We make use of the Poincare 
surface-of-section method to analyze the phase-space structure of test particles. The results are 

shown in Fig. 4(a) for Case I with PBI At = 0, and in Fig. 4(b) for Case II with Pe /4e = -0.99. 



In Fig. 4, the successive intersections of 15 test-particle trajectories with the phase space (r,Pr) 
are plotted every period of the focusing field for 1000 periods. One test particle is initialized at the 
phase-space boundary of the equilibrium distribution, and the corresponding test-particle orbit is 
represented by the inner curved arc in Fig. 4(a) and by the innermost contour in Fig. 4(b). The 
remaining test particles are initialized outside the beam. For both cases shown in Fig. 4, the values 

of Pe are chosen such that the boundary of the equilibrium distribution extends to r = rb. 

Although the space-charge force outside the beam is nonlinear, the phase space is almost entirely 
regular. The same results showing regularity in phase space structure are obtained for different 

values of P0 for Cases I and II. 
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Figure 4. Poincare surface-of-section plots for 15 test particle trajectories under the 
influence of the PPM focusing field shown in Fig 1(a) and the self-electric and self- 
magnetic forces of the equilibrium beams. Shown in (a) is for Case I with single particle 

canonical angular momentum PB = 0, and in (b) for Case II with single particle canonical 

angular momentum Pe /4e = -0.99. 



To summarize the results of this section briefly, we find from self-consistent simulations and 
detailed phase space analysis that in the absence of RF signal, the equilibrium beam transport in 
the PPM focusing klystron is robust and no beam loss is expected. These results are in good 
agreement with the experimental observation [10] of 99.9% beam transmission in the absence of 
RF signal. 

IV. HAI OS INDUCED BY MISMATCHED ENVELOPE OSCILLATIONS 

Microwave generation in a klystron is due to the coupling of large-amplitude charge-density 
and current oscillations in the electron beam with the output RF cavity. The charge-density and 
current oscillations result from the beating of the fast- and slow-space-charge waves on the 
electron beam, and are primarily longitudinal From the point of view of beam transport, the 
charge-density and current oscillations perturb the equilibrium beam envelope discussed in Sec. 
IE. Although a quantitative understanding of the effects of such large-amplitude charge-density 
and current oscillations on the dynamics of the electron beam is not available at present, especially 
in the transverse direction, a qualitative study of such effects is presented in this section. In the 
present analysis, use is made of the standard one-dimensional cold-fluid model to estimate the 
amplitude of the envelope mismatch induced by longitudinal current oscillations, and the two- 
dimensional electrostatic model described in Sec. II is used to explore the process of electron 
beam halo formation in the transverse phase space of the electron beam. 

A. Estimation of the Mismatch Amplitude 

It follows from the linearized continuity equation that the current perturbation (§4)     is 

related to the axial velocity perturbation c(8ßt)    by [18,19] 

to),,      o   fo),, 
h «ö-ßfcCfc,,,      ßfc 

where subscripts / and s denotes the fast- and slow-space-charge waves, respectively, and © 
and kf s are the frequency and wave numbers of the perturbations, respectively. Making the long- 

wavelength approximation for a thin beam, it can be shown that the dispersion relations for the 
fast- and slow-space-charge waves can be expressed as [18] 

fO-ß^^+^-Q), (10) 
IbPb 

where kf assumes plus sign, and ks assumes minus sign. In Eq. (10), esc is the longitudinal 

space-charge coupling parameter. The effective value of Esc is estimated to be Esc = 0.012 for the 

SLAC PPM focusing klystron [10]. In the klystron, the total current oscillations are the sum of 
fast- and slow-space-charge waves with a phase difference of -180°. As a result, the total 



current oscillations and the total velocity oscillations are out of phase by -180°. Therefore, the 
amplitude of the total current oscillations is given by 

fab..   2Yfe#(5ß»), 
h   ~ K   ft 

sad (u) 

This has the important consequence that the perveance of the electron beam varies dramatically 
along the beam. From the definition of the perveance in Eq. (1), it is readily shown that the 
amplitude of perveance variation is given by 

8K 

K 
L. 3rJ£n(«0. 1+ 

n\ J 2ft 

'total 

h 
(12) 

For the SLAC PPM focusing klystron [10], Eq. (12) yields 8K/K = lA5x(8lb)total llb. At the 

RF output section, 8K/K exceeds unity considerably because 8lb / Ib ~ 1. (Note that the current 
oscillations in the RF output section are highly nonlinear and the maximum current exceeds 2Ib.) 
From the beam envelope equation (8), the relative amplitude of beam envelope mismatch is 
estimated to be 8rb/rb = 0.56, where rb is the equilibrium beam radius and &76 / Ib = 1 is 
assumed. In the self-consistent simulations presented below, we use 8rb / rb = 1.0 in order to take 
into account the fact that the instantaneous current exceeds 2Ib during high-power operation of 
the klystron. 

B.   Self-Consistent Simulation of Electron Beam Halo Formation 

The process of halo formation in intense electron beams is studied using the two-dimensional 
self-consistent model described in Sec. TL Results of the simulations are summarized in Figs. 5-10 
for Cases I and II. In the simulations, 4096 macroparticles are used, and the macroparticles are 
loaded according to the rigid-rotor Vlasov distribution [15] with an initial beam radius of 2rb(pi), 

where rfr(0) is the equilibrium beam radius at s = 0 [see Figs. 1(b) and 1(c) for Cases I and II, 

respectively]. The effect of current oscillation build up in the PPM focusing klystron, which 
requires three-dimensional modeling, is not included in the present two-dimensional simulation. 

We first discuss the results of the self-consistent simulation for Case I. In Fig. 5, the effective 
beam core radius is plotted as a function of the propagation distance s. The solid curve is 
obtained from the self-consistent simulation, and the dotted curve is obtained by numerically 
solving the envelope equation (8) with the emittance calculated in the self-consistent simulation. 
As expected, results from the self-consistent simulation and envelope equation are in excellent 
agreement. Although the core radius oscillations are not exactly periodic due to emittance growth, 
the core radius oscillates with an approximate period of 11.5 cm, such that the envelope typically 
executes four periods of oscillations in the entire PPM focusing section of the SLAC PPM 
focusing klystron which is 42 cm long. 
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Figure 5. Plot of the effective beam core radius rb{s) versus the propagation distance s 
for mismatched beam propagation corresponding to Case I. The solid curve is obtained 
from the self-consistent simulation, whereas the dotted curve is obtained by numerically 
solving the envelope equation (8) with the emittance calculated in the self-consistent 
simulation. 

Figure 6 shows the phase-space distributions of the electrons at several axial distances during 
the fourth period of the beam core radius oscillation for Case I. In contrast to the equilibrium 
phase-space distribution (Fig. 3), significant halos appear at s = 34.7 , 37.8, 42.0, 44.1, and 46.2 
cm. In the configuration space plots shown in Figs. 6(a) to 6(e) we observe a large variation in the 
beam core radius during the mismatched envelope oscillation period. The halo particles reach a 
maximum radius of rh = 6.4 mm at s = 42.0 cm, where the beam core radius is a minimum and 

the traveling-wave RF output section is located. Around 1.5% of the electrons are found in the 
halo at that axial position. Because the maximum halo radius of rh = 6.4 mm is greater than the 

actual beam tunnel radius rT =4.7625 mm, these halo electrons are lost to the waveguide wall 
Therefore, the simulation results show that there will be 1.5% beam electron loss. In terms of 
beam power loss, 1.5% beam electron loss in the simulation corresponds to 0.2% beam power 
loss because the lost electrons have given up 88% of their kinetic energies (or have slowed down 
by about a factor of 2 in their axial velocities). The simulation results agree qualitatively with 
0.8% beam power loss observed in the experiment [10]. The discrepancy between the simulation 
and experimental measurements may be caused by nonlinearities in the applied magnetic fields 
which are not included the present simulation as well as by three-dimensional effects which are 
not included in the two-dimensional simulation. It will be shown in Section V that three- 
dimensional effects do have a strong influence on the confinement of highly bunched beams. 

As the beam propagates in the focusing field, its distribution rotates clockwise in the 
(x,dx/ds) phase space, as shown in Figs. 6(f) to 6(j). The particles are initially dragged into the 
halo at the edges of the phase space distribution, where a chaotic region is formed around an 
unstable periodic orbit that is located just outside the beam distribution [20]. The unstable 
periodic orbit is a result of a resonance between the mismatched core envelope oscillations and 
the particles dynamics.    As the halo particles move away from the beam core, the influence of 
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Figure 6.   Plots of particle distributions in phase space at s =34.7, 37.8, 42.0, 44.1, and 
46.2 cm for Case I. 
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Figure 7.   Plots of the halo radius (solid curve) and core radius (dashed curve) as a 
function of the propagation distance s for Case I. 

space charge forces decreases and these halo particles start rotating faster than the core particles, 
creating the S-shaped distributions observed in Figs. 6(f) to 6(j). 

The halo formation is also observed in the (x,dy/ds) phase space distributions shown in Figs. 

6(k) to 6(0). Although the macroscopic (average) canonical angular momentum (PQ \ is constant 

in the simulation, the distributions presented in Figs. 6(k) to 6(0) indicate that the distribution of 
single particle canonical angular momenta induces spread in the(x, dy/ds) phase space. 

Shown in Fig. 7 are the halo radius, i.e., the maximum radius achieved by all of the 
macroparticles in the self-consistent simulation, and the effective beam core radius as a function of 
the propagation distance for Case I. It is apparent in Fig. 7 that the halo formation process takes 
place essentially during the first 4 periods of the envelope oscillations.       After reaching/; = 6.4 
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Figure 8. Plot of the effective beam core radius rb(s) versus the propagation distance s 
for mismatched beam propagation corresponding to Case II. The solid curve is obtained 
from the self-consistent simulation, whereas the dotted curve is obtained by numerically 
solving the envelope equation (8) with the emittance calculated in the self-consistent 
simulation. 
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Figure 9.   Plots of particle distributions in phase space at s =31.5, 33.6, 36.8, 39.9, and 
42.0 cm for Case H. 
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Figure 10. Plots of the halo radius (solid curve) and core radius (dashed curve) as a 
function of the propagation distance s for Case II. 

at s = 42.0 cm, the halo radius saturates. It is interesting to note that once the halo is developed, 
the halo radius and core envelope radius oscillate in opposite phase, with the former being 
maximum when the latter is minimum [as seen in Fig. 6(c)] and vice versa. 

Second, we discuss the self-consistent simulation results for Case II and the role of small 
residual magnetic field at the cathode in the halo formation process. Figure 8 shows a plot of the 
effective beam core radius as a function of the propagation distance s. In Fig. 8, an excellent 
agreement is found between the envelope obtained from the self-consistent simulation (solid 
curve) and the envelope obtained by numerically solving the envelope equation (8) with the 
emittance calculated in the self-consistent simulation (dotted curve). One of the effects of the 
residual magnetic field at the cathode is to decrease the period of the envelope oscillations. The 
period for case II is 10.5 cm, slightly shorter than the period found in Case I (Fig. 5). The 
envelope executes four periods of osci'litions in the entire PPM focusing section of the SLAC 
klystron. 

Figure 9 shows the phase-space distributions of the electrons at several axial distances during 
the fourth period of the beam core radius oscillations for Case II. The configuration space 
distributions shown in Figs. 9(a) to 9(e) do not exhibit sizable halos. In particular, comparing 
Figs. 9(a)-9(e) with the configuration space distributions for Case I, shown in Figs. 6(a)-6(e), it is 
clear that the halos are much more pronounced in Case I. Analyzing Figs. 9(d) and 9(e) in more 
detail we observe hollow regions in the interior of the beam and that the existing halos appear in 
the form of vortices. Because the beam rotation period is calculated to be approximately 3 times 
the envelope oscillation period, the hollow regions and associated vortex structure might be a 
result of a diocotron instability process driven by a resonance between the envelope oscillations 
and the beam rotation. 

The properties of the phase space distributions shown in Figs. 9(f) to 9(o) resemble the 
properties discussed in Case I with regard to the rotation in the (x,dx/ds) phase space and the 

spread in the (x,dy/ds) phase space. In comparison with Case I, the main difference is that the 
phase space distributions in Case II exhibit vortex structures. 



Figure 10 shows the halo radius and effective beam core radius as a function of the 
propagation distance for Case II. Although sizable halos arise in the simulation after many periods 
of envelope oscillations, it is evident that the halo formation process is slower in Case II than in 
Case I (see Fig. 7). In particular, despite that the initial beam radius in Case II is larger than in 
Case I, the halo radius in Case I is greater than that in Case II at the output section (s =42 cm) of 
the PPM focusing klystron. Because the halo radius at s = 40 cm is 5.3 mm and is still greater 
than the beam tunnel radius, the electrons in the halo are lost to the waveguide wall Nevertheless, 
these results indicate that a small residual magnetic field at the cathode plays an important role in 
delaying the halo formation process and might be used to prevent electron beam loss in future 
experiments. 

V. CONFINEMENT CRITERION FOR BUNCHED BEAMS 

In this section, we study the confinement of a highly bunched beam propagating through a 
perfectly conducting drift tube in a uniform magnetic field. In the present analysis, a highly 
bunched beam is treated as a periodic array of point charges, while a unbunched beam is 
considered as a line charge, as illustrated in Fig. 11, where a is the radius of the drift tube and L 

is the period. In Fig. 11, the point charge represents a bunch in a highly bunched beam. Use is 
made of eigenfunction expansion to compute the Green's functions for the Poisson equation for 
both the line charge and the periodic array of point charges [14]. Making use of these Green's 
functions, we compute the electrostatic potential due to the surface charge on the perfectly 
conducting drift tube. With a proper choice of the vector potential for the applied uniform 
magnetic field B0e , we derive and analyze non-relativistic Hamilton's equations of motion for 
both the line charge and the periodic array of point charges. 

2-D f 3-D 
Configuration U-*x Configuration 

Figure 11.   Schematics of a line charge and a periodic array of point charges in a perfectly 
conducting drift tube. 



Figure 12. Plot of the highest value of the effective self-field parameter 200*/CO* as a 

function of  a = 2Tta / L for radial confinement of unbunched (2D) and highly bunched 
(3D) beams. 

It can be shown [21] that for a charge bunch with canonical angular momentum/^ =0, the 

condition for radial confinement is given by 

2co 

co. 
1 

not (13) 

/„(not)/, («a) 

where a = 2na/L, I0(x) and /,(x) are the zeroth- and first-order modified Bessel functions of 

the first-kind, respectively, (02
p = {4Tie2/m)\Nbmch/na2L) is the effective plasma frequency 

squared with N^^ being the number of electrons per bunch, and coc = eBQ / mc is the 
nonrelativistic electron cyclotron frequency. Figure 12 shows the highest value of the effective 
self-field parameter 2©* / CO* as a function of cc = 2rta / L for radial confinement. Note that the 

well-known Brillouin density limit with 2co* / CO* = 1 [22]  is recovered by taking L —» 0 while 

holding the effective plasma frequency cop fixed. 

The results shown in Fig. 12 suggest that a stronger magnetic field is required to confine a 
beam as it becomes bunched in the axial direction. Work is in progress to examine the full effect 
of bunching on halo production in high-power PPM klystron amplifiers. 

VI. CONCLUSIONS 

We have studied the behavior of a high-intense electron beam under a current-oscillation- 
induced mismatch between the beam and the magnetic focusing field, using a two-dimensional 



self-consistent electrostatic model. For high-intensity electron beams, it was found from the 
simulations that sizable halos appear after the beam envelope undergoes several mismatched 
oscillations, depending on the amplitude of mismatched beam envelope oscillations. Detailed 
simulation results were presented for the choice of system parameters corresponding to the 50 
MW, 11.4 GHz periodic permanent magnetic (PPM) focusing klystron experiment at the Stanford 
Linear Accelerator Center (SLAC). The simulation results were in qualitative agreement with the 
experimental observation of 1% beam power loss in the SLAC PPM focusing klystron. 

We have also derived a criterion for the confinement of a highly bunched beam propagating 
through a perfectly conducting drift tube in a uniform magnetic field. This confinement criterion 
suggests that a stronger magnetic field is required to confine a beam as it becomes bunched in the 
axial direction. Work is in progress to examine the full effect of bunching on halo production in 
high-power PPM klystron amplifiers. 
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